Reprinted from The American Mathematical Monthly 75.9(1968)1010-1011

A Sum of Multiples of Given Primes

E 2005 [1967, 720]. Proposed by W. A. McWorter, Ohio State University
Let p_{1}, \cdots, p_{t} be distinct primes and n a positive integer, and let $k=p_{1} p_{2}$ $\cdots p_{t}$. Show that there exist nonnegative integers a_{1}, \cdots, a_{t} such that

$$
\sum_{i=1}^{t} a_{i} p_{i}=\binom{k n-1}{k-1}-1
$$

Solution by Stanley Rabinowitz, Far Rockaway, N. Y. Claim: If M is any integer greater than or equal to k, then there exist nonnegative integers a_{1}, \cdots, a_{t} such that

$$
\sum_{i=1}^{t} a_{i} p_{i}=M, \quad(t>1)
$$

Proof: The case $t=2$ is proved in problem E 1967 [1968, 675]. If it is true for t primes, then $k=p_{1} p_{2} \cdots p_{t}$ is a linear combination of the $p^{\prime} s$ with nonnegative coefficients. But k and p_{t+1} are relatively prime, so any number $\geqq k p_{t+1}$ is also such a linear combination of the $(t+1) p$'s. Hence by induction our claim is true for all $t \geqq 2$.

If $n>1,\binom{k n-1}{k-1}-1 \geqq k n-1 \geqq k$, so the theorem is true for $t>1$ by the above.
If $t=1$, we have modulo p,

$$
\begin{aligned}
\binom{p n-1}{p-1} & \equiv(p n-1)(p n-2) \cdots(p n-p+1) /(p-1)! \\
& \equiv(1)(2) \cdots(p-1) /(p-1)!\equiv 1
\end{aligned}
$$

Hence

$$
\binom{p n-1}{p-1}-1=a p
$$

